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Abstract
In this study, the behavior of the electric field and its potential are investigated
in a region bounded by a rough fractal surface and a distant plane. Both
boundaries, maintained at distinct potential values, are assumed to be
conductors and, as such, the electric potential is obtained by numerically solving
Laplace’s equation subject to the appropriate Dirichlet’s condition. The rough
boundaries, generated by the ballistic deposition and fractal Brownian motion
methods, are characterized by the values of the surface roughness W and the
local fractal dimension d f = 3 − α, where α is the usual roughness exponent.
The equipotential surfaces, obtained from Laplace’s equation, are characterized
by these same parameters. Results presented show how d f depends on the
potential value, on the method used to generate the boundary and on W . The
behavior of the electric field with respect to the equipotential surface is also
considered. Its average intensity was found to increase as a function of the
average distance from the equipotential to the fractal boundary; however, its
intensity reaches a maximum before decreasing towards an asymptotic constant
value, an effect that increases as the value of W increases.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Despite the significant progress in theoretical methods for dealing with partial differential
equations, classical problems in electrostatics remain unsolved. The solutions to these
problems are far from trivial and include, for instance, the analytical solutions of Laplace’s
(or Poisson’s) equation, where the boundaries at which the Neumann, Dirichlet or Cauchy
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conditions are imposed have irregular shapes. Such solutions are of great relevance to a
large number of current problems that require knowledge of the local electric field in the
vicinity of conducting or semiconducting tips with small protrusions subjected to large potential
differences. Examples of practical situations in which such conditions are found include
the mounting of many devices such as microwave power amplifying tubes, field emission
displays and several kinds of metal or semiconductor emitters, with nanometer size tips [1–5].
With respect to the latter, experiments show that electron emission by materials is extremely
localized, confined to regions with irregularities in a nanometric scale, that display some kind
of self-similar property in this particular scale [6]. The emission is controlled by externally
monitoring extensive parameters of the systems such as voltage and current intensity. From
a theoretical point of view, however, it is important to access the local properties resulting
from the solution of Laplace’s equation. These intensive properties (electric field intensity and
current density) are important to enable an analytical calculation of the emission properties of
the device to be performed, using, for example, the Fowler–Nordheim equation [7].

Due to the intrinsic analytical difficulties encountered in evaluating the properties of
systems with irregular shapes, it has become current practice to resort to numerical procedures,
as well as to concepts that are beyond those of Euclidean geometry, in order to investigate
such problems. If the system displays scale invariance, concepts of fractal geometry can be
used to measure several of its properties, at least for the length interval within which this
invariance prevails. Several fractal-based approaches have been applied to analyze properties
of several systems from different branches of science, including those that give rise to irregular
surfaces [6, 8, 9]. Herein, concepts of self-affinity lead to the definition of several measures
such as the roughness exponent and local fractal dimension, Hölder exponent and singularity
(or multifractal) spectrum, among others. These factors play an important role in quantifying
the irregularity of surfaces and in evaluating whether this irregularity remains the same over all
regions.

In previous studies, we have investigated these concepts in order to analyze the scaling
behavior of equipotential lines produced by irregular conducting profiles subjected to a
potential difference with respect to a distant straight line [10, 11]. The results presented with
respect to the behavior of d f have been discussed along two distinct perspectives, either by
taking a system of fixed size and allowing the roughness property to change or by considering
a collection of systems of increasing size.

In this present paper, we return to the first perspective to study the electrical properties of
a three-dimensional region in which the lower and upper boundaries are conductors consisting
of, respectively, an irregular surface with fractal properties z0 = z0(x, y) for which the average
of the normal vector to each surface element points along the z-direction, and a distant plane
z1 = cte. Periodic conditions are considered along the x and y plane directions. The fractal
surfaces are created either by the ballistic deposition (BD) [8] or by the fractional Brownian
motion (FBM) methods [9], while the evaluation of the roughness exponents α for the boundary
itself and for the equipotential surfaces proceed according to the root mean square (RMS)
methodology [9]. The results discussed herein go beyond those previously discussed in two
aspects: first, we discuss not only the properties of the equipotential surfaces, but also the
magnitude of the electric field; next, as we consider the systems to be of a fixed size, we explore
the behavior of the field and its potential with respect to the value of the surface roughness, i.e.,
the dispersion of the function z0 = z0(x, y).

The rest of the the paper is organized in the following manner. In section 2 the methods
used for generating fractal surfaces and for unveiling their scaling behavior are discussed. For
the sake of clarity, section 3 is divided into two subsections, in which we discuss, respectively,
the behavior of equipotential surfaces, and the dependence of the electric field with respect
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to the distance to the boundary and the boundary roughness. The final section of the paper
summarizes these new results.

2. Methodology

The electrostatic problem to be solved is that of finding the electric potential in a charge-free
region, bounded by two conductors that are kept at constant but different potential values. This
corresponds to solving Laplace’s equation under Dirichlet boundary conditions. As discussed
in the introduction, the irregular shape of one of the boundaries precludes the use of analytical
methods; therefore, we were obliged to resort to a three-dimensional extension of Liebmann’s
method [12] to obtain a numerical solution to the problem. This amounts to mapping the
domain onto a three-dimensional lattice of points �r = i î+ j ĵ+ kk̂, where i, j and k are integer
numbers in the interval [0, L], and î, ĵ and k̂ are unit vectors along, respectively, the x , y and
z positive directions. Following this mapping, length is then measured in terms of grid units
and the differential equation is converted into the following set of difference equations for the
potential values φi, j,k at each point of the grid [12]:

φi, j,k = [
φi−1, j,k + φi+1, j,k

]
KI + [

φi, j−1,k + φi, j+1,k
]

KII + [
φi, j,k−1 + φi, j,k+1

]
KIII. (1)

In equation (1), i , j and k label the point �r of the grid, where the potential is calculated, and
the vector k̂ is perpendicular to the distant plane. We consider a simple cubic lattice, therefore
KI = KII = KIII = 1

6 . The fractal surface and the distant plane are maintained at constant
potential values of φ0 = 0 and φ1 = 100, respectively.

The potential values at the boundary grid points are maintained constant throughout the
entire integration process during which the set of equations represented by (1) is iteratively
solved until a predefined convergence in the values of φi, j,k associated with the off-boundary
points is achieved. This criterion may be, for example, when the maximum difference in the
potential φi, j,k between two successive iterations is less than 10−8%. The initial values of
0 < φi, j,k < 100 are irrelevant to the final solution, but an adequate choice may speed up the
convergence. As anticipated in the introduction, periodic boundary conditions were imposed
along x and y directions, i.e., φi, j,k = φi+L , j,k = φi, j+L ,k = φi+L , j+L ,k .

Once the convergence of φ within the iterative procedure is achieved, it is possible to
interpolate the solution to obtain the potential value at any off-grid point or, inversely, to obtain
approximate values for the coordinates associated with a given value of the potential. The
quality of these interpolations depends, of course, on the number of points that are used to
construct the grid. Thus, it is possible to evaluate a set of equipotential surfaces for any chosen
value of φ. Let us consider the simple situation in which the potential variation rate between
two successive grid points along the k̂ direction is

Gφ = φi, j,k+1 − φi, j,k

�k
= φi, j,k+1 − φi, j,k, (2)

as �k = 1. The potential at an off-grid point (i, j, k + dz), where i , j and k assume the same
values as in (2), and 0 < dz < 1, is given by

φi, j,k+dz = φi, j,k + Gφ dz. (3)

The components of electric field, Ex, Ey and Ez are evaluated in a similar way. First, let
us consider the grid points, where it is possible to obtain first order approximations such as:

Ex = φi+1, j,k − φi, j,k

�x
= φi+1, j,k − φi, j,k, (4)

with similar expressions for y and z field components.
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Figure 1. Schematic representation of an off-grid point P, in which the electric field is evaluated.

Let us now consider an off-grid point P, with coordinates (rx , ry, rz), which lies inside
a cube, the vertices of which are grid points of coordinates i + l, j + m and k + n, with
l, m, n = 0, 1. Using shorthand notation, these coordinates will be expressed as xn, yn and zn ,
with n = 0, 1 (see figure 1). It is possible to evaluate the displacement of P with respect to the
coordinated planes passing through the point (x0, y0, z0) by

rx0 = x0 − rx , ry0 = y0 − ry, rz0 = z0 − rz . (5)

As we normalize the distance between any pair of grid points that are first neighbors to
1.0, the displacement of point P to the other seven vertices of the cube can be easily expressed
in terms of (5). For instance, the displacement (rx1 , ry1 , rz1), which corresponds to the distance
to the coordinated planes passing through (x1, y1, z1) is given by

rx1 = 1 − rx0 , ry1 = 1 − ry0, rz1 = 1 − rz0 . (6)

Denoting the distance between P and any of the vertices of the cube by rxn yn zn , with n = 0, 1,
so that

rxn ynzn =
√

(rxn )
2 + (ryn)

2 + (rzn )
2, (7)

the field components of any off-grid point can be expressed by

Eμ = rnorm

1∑

n=0

[
Eμ(i+n, j+n,k+n)

rxn yn zn

+ Eμ(i+1, j,k+n)

rx1 y0zn

+ Eμ(i+n, j+1,k)

rxn y1z0

+ Eμ(i, j+n,k+1)

rx0 yn z1

]
. (8)

In (8) μ represents x, y or z, and rnorm is written as

1

rnorm
=

1∑

n=0

[
1

rxn yn zn

+ 1

rx1 y0zn

+ 1

rxn y1z0

+ 1

rx0 ynz1

]
. (9)

Let us now consider the fractal analysis, which is used to quantitatively characterize the
scaling properties of the irregular sets of the problem: the lower boundary and the equipotential
surfaces. As these sets possess self-affine rather than self-similar properties, their scaling
behavior may be quantified by the roughness exponent α, which is quite similar to the usual
Hurst exponent H [6]. For the current problem, α is a measure of the distinct scales used to
leave the system invariant after transformations in the directions perpendicular to the plane and
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along the plane. There are several algorithms that may be used to obtain reasonable estimates
of the value of α for systems that, like ours, are not exactly invariant according to geometrical
construction, but only statistically invariant.

The results reported here were obtained using the root mean square (RMS) method [9],
which is based on the scaling behavior of the dispersion of the surface height with respect to the
scale h used for the measure. Let zφ�

(x, y) denote the z-coordinate of a generic equipotential
surface corresponding to the potential φ�. Note that, within this notation, zφ=0(x, y) describes
the lower boundary of the region. The roughness W of an equipotential, measured in the scale
h, is identified by its dispersion σ(h) as

W (h) = σ(h) = 1

nh

nh∑

i=1

√
1

mi

∑

x,y∈h

(zφ�
(x, y) − 〈z〉)2. (10)

In (10), zφ�
(x, y) is an equipotential coordinate corresponding to the potential φ�, nh is

the total number of square “windows” of side h, mi is the number of points within the i th
window and 〈z〉 is the average height of the points corresponding to the equipotential, within
the respective “window”. For exactly self-affine sets [8] the roughness may be shown to vary
asymptotically with the length scale h according to a power law

σ(h) ≈ hα, (11)

where the roughness exponent α is evaluated by fitting the data for σ(h). For the problem
investigated here, we obtained a series of roughness exponents α�, which depend on the value
of the potential φ�.

Two auxiliary parameters that will be used in the discussion of the results are directly
obtained from this method. The first is that the surface roughness W for a patch of area L × L
is defined by W = σ(hmax) = σ(L). The second is that it should be remembered that it is
quite common to associate a local fractal dimension to self-affine objects, which, for irregular
surfaces, may be expressed in terms of the roughness exponents α by

d f = 3 − α. (12)

3. Results and discussion

3.1. Scaling properties of equipotential surfaces

In this analysis, irregular boundaries generated by BD and FBM methods are considered. In
the first case, there is controversy with respect to the exact value of α, since the best numerical
estimates still assign a relatively broad interval α ∈ (0.33, 0.4) [8, 13]. In the second case, FBM
algorithms depend on a free parameter, which allows the possibility of generating surfaces with
distinct roughness exponents.

In all cases, discrete grids of up to 100×100×100 points were used. To test the reliability
of this code figure 2 shows the σ(h) signal plotted as a function of h for three different sets
that have been used as boundaries in this electrostatic problem. The values of the exponents α,
obtained from a linear regression of each corresponding set of points (see equation (11)), are
in agreement with the expected results: one of the surfaces was generated according to the BD
algorithm and, accordingly [8], we find α = 0.331±0.005, which leads to d fB = 2.669±0.005.
The other two surfaces, grown with the help of an FBM procedure, were selected for having α-
values of 0.36 and 0.4, respectively. The slopes of the best linear fits shown in figure 2 indicate
d fF1 = 2.640 ± 0.003 and d fF2 = 2.600 ± 0.002. Thus, these results validate our code for
the RMS algorithm and are used to characterize the set of equipotential surfaces. Although the
values of the roughness exponents for the three surfaces lie within a relatively narrow range,
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Figure 2. Dependence of σ(h) with respect to h for the three different boundaries shown in figure 3.
The values of α are similar for the three boundaries, but the roughness value, W , is different. The
linear dependence is typical of a self-affine fractal surface. Values of α for the three surfaces were
evaluated in the interval 2 � h � 20.

Figure 3. Gray-tone plots of fractal boundary surfaces generated by BD (a) and FBM ((b), (c))
algorithms. Corresponding values of roughness W are 3.89, 1.79 and 1.26. White (black) indicates
points with larger (smaller) values of z.

it can be seen that the values of the roughness W = σ(L = 100), represented by 3.89, 1.79
and 1.26, respectively, differ considerably from each other, as illustrated in figure 3. This fact,
which does not noticeably change the scaling properties of the equipotential surfaces, interferes
much more significantly with the properties of the electric field, as will be discussed in the next
subsection.

As is already well known, the possibility of lateral attachment during the ballistic
deposition process leads to the emergence of voids, located below the points corresponding
to the grown surface, as illustrated in figure 4(a). When solving Laplace’s equation, the empty
sites below the surface are not subject to the boundary conditions and, technically, values of the
potential at these points should be evaluated. However, as we have little interest in what happens
inside these narrow spaces, we ignored the presence of all empty sites. This is equivalent to
considering that all points below the surface have the same potential as the surface, φi, j,kSup , so
that

φi, j,k<kSup = φi, j,kSup . (13)

6
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Figure 4. (a) BD showing the lateral attachment that leads to the presence of voids under the
surface. (b) Approach used for solving Laplace’s equation.

Figure 5. Roughness W = σ(hmax) as a function of deposition time in a logarithmic scale for three
different surface sizes in a BD process. After a certain deposition time, W stops increasing. One
time unit corresponds to the deposition of the number of particles corresponding to one monolayer.

To complete the characterization of the fractal surfaces acting as boundaries, figure 5
illustrates the growth of W at the early stages of the process of three distinct BD surfaces, from
which the growth exponent, β , may be evaluated. Again, the value β � 0.22 is in agreement
with values reported in the literature [8, 14].

The scaling behavior of the equipotential surfaces summarized in figure 6 is now discussed.
It illustrates how d fφ depends on φ when the lower boundary is chosen for each of the surfaces
presented in figures 2 and (3). The overall trend shown in figure 6 is the decrease in the value of
d fφ as φ increases; i.e., the equipotential surfaces become less space filling when they approach
the smooth upper boundary. Apart from this general feature, it may be seen that, for small
values of φ (�10), the variation in d f is more pronounced for the BD boundary. For larger
values of φ, a monotonic decrease in the values of d fφ does not change the decreasing order
of the values of d f that characterizes the lower boundary, i.e., d fB > d fF1 > d fF2. These
results show that the characteristics of the fractal surface used to form the lower boundary of
the region are clearly propagated into the region where the equipotential surfaces are evaluated.
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Figure 6. Dependence of d fφ�
, evaluated for the corresponding equipotential surfaces, as a function

of φ� for 0 � φ� � 30. The lower boundaries are represented by the three fractal surfaces shown in
figures 2 and 3. The potential at the lower boundary is set to φ = 0.0, while for the upper boundary,
represented by a horizontal distant plane, it is kept at φ = 100 (arbitrary units). d f is evaluated
according to (10)–(12).

As observed, when analyzing the results for the corresponding one-dimensional problem, we
were unable to characterize the dependence of d fφ as a function of φ by any simple relationship
such as an exponential or power law decrease.

The potential value associated with the distant plane is 100 and, of course, this surface has
a dimension value of 2.0. Despite its reliability in determining the roughness exponent of an
irregular surface [15], the RMS method, as well as other proposed algorithms for measuring
scaling behavior, proved to be inadequate for evaluating values of α for flat enough surfaces.
Indeed, it is quite easy to notice that, if one tries to apply equations (10) and (11) to a horizontal
plane, the value of α is poorly defined. For the set of equipotential surfaces, similar problems
occur for φ > 30, particularly when the lower boundary conductor is represented by an FBM
surface. This corresponds to the last point of each curve in figure 6, which shows that d fφ has
reached a value of 2.1. As shown in figure 7, in such a range the values of W drop to less than
1/20 of their value at φ = 0. In such situations, the correct values of d fφ , which decrease
continuously to the limit d fφ=100 = 2.0, cannot be reproduced by the RMS algorithm.

It is also important to discuss the behavior of the average distance 〈d(φ�)〉 from a given
equipotential surface with φ = φ� to the lower fractal boundary. For a system of size L × L,
this is defined as

〈d(φ�)〉 = 1

L2

L2∑

n=1

[zφ�
(xn, yn) − zφ=0(xn, yn)]. (14)

Figure 8(a) shows that 〈d(φ)〉 depends on the value of φ for the same three 100 × 100
systems as discussed above. The results are similar to those previously calculated for 1D + 1
profiles [16]. Within a large range of the potential values (20 � φ � 90), it is possible to
identify a linear dependence between 〈d(φ)〉 and φ. However, for values of φ < 20, such linear
behavior is no longer detected. This is confirmed by examining a neighborhood very close to
the lower boundary (see figure 8(b)). For the narrow range of 0.0 < φ � 1.0, a clear non-linear
behavior between 〈d(φ)〉 and φ is found. For graphical convenience, the average distance for

8



J. Phys.: Condens. Matter 19 (2007) 476215 T A de Assis et al

Figure 7. Roughness of the equipotential lines as a function of electric potential for a fractal
boundary generated by BD and FBM procedures, with 100 × 100 dimensions.

φ φ

Figure 8. (a) Dependence of 〈d(φ)〉 with respect to φ. Surfaces shown in figure 3 are used as lower
boundaries. (b) Detail of (a) for 0 < φ � 1. For all three boundaries, 〈d(φ)〉 is normalized to unity
when φ = 1.0.

all three situations was normalized to unity at φ = 1.0. This result is a consequence of an
abrupt change in the roughness, as confirmed in figure 7.

3.2. Field properties

Here, changes in the intensity of the electric field are investigated by examining how its mean
value along the equipotential surfaces depends on the value of φ and on the mean distance from
that equipotential surface to the lower boundary 〈d(φ)〉. Furthermore, we also discuss how the
value of W , for the different fractal surfaces used as lower boundaries, influences the behavior
of the electric field.

The average value for the intensity of the electric field associated with an equipotential φ�,
i.e. 〈E(φ�)〉, is defined by

〈E(φ�)〉 = 1

L2

L2∑

m=1

[(Emx)
2 + (Emy)

2 + (Emz)
2] 1

2 , (15)
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φ φ

Figure 9. (a) Dependence of 〈E(φ)〉 on 〈d(φ)〉 for the same boundaries shown in figure 3. As can
be seen, the field is very small near the boundary and it converges into a constant value for very
large distances. The area under the curve, which corresponds to the potential difference, is the same
for all three boundaries used. As (b), the same data for 〈E(φ)〉 as in (a), drawn as a function of the
roughness W (φ) of each equipotential surface.

where m runs along the points of the corresponding φ� equipotential surface. For the surfaces
used, the average is calculated over 10 000 points.

Figure 9(a) shows how 〈E(φ)〉, evaluated at different equipotential surfaces, depends on
the value of 〈d(φ)〉. The results, which are far from trivial, show that 〈E(φ)〉 is very small at
points extremely close to the boundary; thereafter, however, undergoing a rapid increase in a
relatively narrow interval of 〈d(φ)〉. When FBM surfaces, characterized by lower values of W ,
are taken to form the boundary, the increase in 〈E(φ)〉 is still more abrupt if compared with the
previous results for the BD boundary. A second interesting aspect shown in figure 9(a) refers
to the fact that 〈E(φ)〉 goes through a maximum at an intermediate value of 〈d(φ)〉.

These two features may be used to compare this behavior to that of a constant field
between two parallel plates held at constant potential differences. The electric field results from
contributions of the charge distribution over the entire surface. For points that are very close to
irregular surfaces, many of these contributions have much larger horizontal components than
for a point closer to a flat plane. Moreover, their directions are randomly distributed in the (x, y)

plane. These two features lead to small values of the local field intensity and, consequently, to
small values of 〈E(φ)〉. This explains why the high W boundary sustains very small fields up
to larger values of 〈d(φ)〉. To emphasize the dependence of 〈E(φ)〉 on W , figure 9(b) shows
the same data for 〈E(φ)〉 as a function of the value of W (φ) for the corresponding equipotential
surface.

The second effect can be more clearly identified for the BD boundary. The average electric
field intensity is not constant, but it asymptotically approaches a constant value that depends on
the boundary used. This may be easily explained by considering that, despite the fact that the
potential bias is the same, the average distance 〈D〉 between the two corresponding conductors
depends on the value of W with respect to the lower boundary. Therefore, 〈D〉 is smaller
for the conductor generated by BD (larger W ), which leads to a higher average electric field.
The presence of a maximum value of 〈E(φ)〉 is correlated to the presence of sharp peaks in
the irregular surface. These peaks carry a large charge density that contributes locally to high
values of the potential gradient. When the average distance 〈d(φ)〉 is larger than the height
at which these sharp peak contributions are more relevant, the field starts decreasing to its
asymptotic value.

10
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If the two boundaries are moved away from each other, corresponding to W/〈D〉 → 0,
and if there is a corresponding increase in the potential bias, we would finally reach a region
where, for each different situation, the field would have the same asymptotic value given by the
potential bias divided by 〈D〉.

4. Summary and conclusions

In this paper we evaluated the electrostatic problem defined in a charge-free region, bounded
by two conductors that are kept at a constant potential difference: an irregular surface with
fractal properties and a distant plane. The fractal boundaries were generated by the BD and the
FBM methods. The purpose of the study was first to characterize the scaling behavior of the
equipotential surfaces between the two boundaries.

The dependence of the average electric field is also considered, taken along each of the
equipotential surfaces, with respect the mean distance to the irregular boundary and to the
surface’s own roughness. The RMS method was used for quantifying fractal properties.

Our results show how the fractal dimension d f of the equipotential surfaces decreases
with the distance to the fractal boundary. This decrease occurs at a slower pace when the
region is bounded by the BD surface, even when its fractal dimension is very close to that of
a FBM boundary. However, since the roughness, W , of the two surfaces is quite different,
this leads to the conclusion that the ’propagation’ of the irregularities of the boundary into the
bounded region, which is shown by the scaling properties of the equipotential surfaces, depends
essentially on W rather than on d f .

Investigation of the behavior of the average distance from an equipotential to the fractal
boundary 〈d(φ)〉, with respect to φ, has shown a region of linear variation that does not extend
to small values of φ. This indicates that, close to the fractal boundary, the gradient of the
average distance is no longer constant, as occurs in the case of equipotential surfaces at larger
distances from the irregular boundary.

Finally, the average electric field intensity 〈E(φ)〉 along an equipotential surface is shown
to have a non-trivial dependence on the average distance 〈d(φ)〉. For an irregular boundary
with a large enough value of W , the value of 〈E(φ)〉 reaches a maximum before converging
with an asymptotical value at large distances. By comparing the results for boundaries sharing
the same value of fractal dimensions, we conclude that this behavior depends greatly on the
roughness of the boundary, which, in turn, also depends on the growing process of the fractal
boundary.
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